Refine Your Search

Topic

Author

Search Results

Technical Paper

Dynamic Evolution of the 3-D Flow Field During the Latter Part of the Intake Stroke in an IC Engine

1998-02-23
980485
Measurements of the temporal evolution of the 3-D velocity field were performed in an IC engine during the latter part of the intake stroke using a Water Analog Engine Simulation Rig and the 3-D Particle Tracking Velocimetry technique (3-D PTV). The engine head tested was a typical 4 valve, pent-roof type combustion chamber shape with slightly asymmetric intake passages to favor a preferred swirl with one intake valve almost deactivated to reinforce the swirling flow pattern. This study was aimed at characterizing the dynamic development of the flow field resulting from this head geometry and asymmetric valve event during the latter part of the intake stroke. The most salient feature of this flow field is that this final, highly organized and energetic vortex does not emerge until relatively late in the intake stroke. Even as late at 60° BBDC, the flow field is still characterized by smaller (of the order of 1/4 or 1/3 of the bore size) structures, particularly in the tumble plane.
Technical Paper

Dynamic Modeling and Characterization of Transmission Response for Controller Design

1998-02-23
981094
Electronic closed loop control of automatic transmission functions can potentially benefit from the use of quantitative models of transmission response in a form compatible with controller design procedures. Transmission dynamic response during gear shifts of a discrete-ratio transmission is nonlinear. Procedures for developing linearized dynamic models are applied to the simulation of the nonlinear model of a representative power train during the inertia phase of a shift. The frequency responses for the resulting linear models are examined, and their implications for controller design are noted.
Technical Paper

Dynamic Simulation of Nonlinear Model-Based Observer for Hydrodynamic Torque Converter System

2004-03-08
2004-01-1228
It is well-known that the hydrodynamic torque converter plays a major role in the transient study of power train systems since it has a great influence on the transient characteristics of a vehicle during gear shifting as well as vehicle launching. To predict accurately the vehicle characteristics, detailed analysis of the hydrodynamic torque converter is required. However, even with the development of a nonlinear dynamic model for the torque converter based on Hrovat and Tobler's paper (1985) is available, it is imperative to calculate both torques from impeller and turbine in order to utilize the dynamic model since it takes torque as an input [3]. In order to obtain the information about necessary but unmeasurable variables, nonlinear model-based estimator is developed using already available and measurable speeds data of impeller and turbine. The hydrodynamic torque converter model includes all necessary dynamics, namely, hydraulic as well as mechanical dynamics.
Technical Paper

Effect of Intake Primary Runner Blockages on Combustion Characteristics and Emissions with Stoichiometric and EGR-diluted Mixtures in SI Engines

2007-10-29
2007-01-3992
In-cylinder charge motion is known to significantly increase turbulence intensity, accelerate combustion rate, and reduce cyclic variation. This, in turn, extends the tolerance to exhaust gas recirculation (EGR), while the introduction of EGR results in much lowered nitrogen oxide (NOx) emissions and reduced fuel consumption. The present study investigates the effect of charge motion in a spark ignition engine on fuel consumption, combustion, and engine-out emissions with stoichiometric and EGR-diluted mixtures under part-load operating conditions. Experiments have been performed with a Chrysler 2.4L 4-valve I4 engine under 2.41 bar brake mean effective pressure at 1600 rpm over a spark range around maximum brake torque timing. The primary intake runners are partially blocked to create different levels of tumble, swirl, and cross-tumble (swumble) motion in the cylinder before ignition.
Technical Paper

Effect of Viscoelastic Patch Damping on Casing Cover Dynamics

2001-04-30
2001-01-1463
Many automotive components and sub-systems require viscoelastic damping treatments to control noise and vibration characteristics. To aid the dynamic design process, new approaches are needed for modeling of partial damping treatments and characterization of the overall dynamic behavior. The analytical component of the design process is illustrated via the transmission casing cover, along with supporting experiments. First, the vibration response of production casing plates is examined, with and without the constrained layer treatment. A modified flat plate is employed along with a generic housing that provides the realistic boundary conditions for subsequent work. A simplified analytical damping model for constrained viscoelastic layer damping is suggested based on assumed modal functions. Using the analytical model, design guidelines in terms of optimal patch shapes and locations are suggested.
Technical Paper

Engine and Load Torque Estimation with Application to Electronic Throttle Control

1998-02-23
980795
Electronic throttle control is increasingly being considered as a viable alternative to conventional air management systems in modern spark-ignition engines. In such a scheme, driver throttle commands are interpreted by the powertrain control module together with many other inputs; rather than directly commanding throttle position, the driver is now simply requesting torque - a request that needs to be appropriately interpreted by the control module. Engine management under these conditions will require optimal control of the engine torque required by the various vehicle subsystems, ranging from HVAC, to electrical and hydraulic accessories, to the vehicle itself. In this context, the real-time estimation of engine and load torque can play a very important role, especially if this estimation can be performed using the same signals already available to the powertrain control module.
Technical Paper

Examination of Some Vibration Isolator Models and Their Effects on Vibration and Structure-borne Noise Transmission

2003-05-05
2003-01-1477
A vibration isolator or mount is often modeled by the Voigt model describing uni-axial (longitudinal) motion with frequency-invariant parameters. However, wave effects due to the mass distribution within the isolator are observed as the frequency is increased. Further, flexural stiffness components play an important role, leading to off-axis and coupling effects. Thus, the simplified mount models could lead to erroneous predictions of the dynamic behavior of an overall system such as automotive powertrain or chassis mounting systems. This article compares various approximate isolator models using a multi-dimensional mobility model that is based on the continuous system theory. Harmonic force and moment excitations are separately applied to a rigid body source to investigate the multi-dimensional vibratory behavior. Analysis is however limited to a linear time-invariant system and the mobility synthesis method is utilized to predict the frequency domain behavior.
Technical Paper

Fabrication of a Parallel-Series PHEV for the EcoCAR 2 Competition

2013-10-14
2013-01-2491
The EcoCAR 2: Plugging into the Future team at the Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 50 miles of all-electric range. The vehicle features a 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes. This is made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 51 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This report details the fabrication and control implementation process followed by the Ohio State team during Year 2 of the competition. The fabrication process includes finalizing designs based on identified requirements, building and assembling components, and performing extensive validation testing on the mechanical, electrical and control systems.
Technical Paper

Fast Algorithm for On-Board Torque Estimation

1999-03-01
1999-01-0541
Electronic Throttle Control systems substitute the driver in commanding throttle position, with the driver acting on a potentiometer connected to the accelerator pedal. Such strategies allow precise control of air-fuel ratio and of other parameters, e.g. engine efficiency or vehicle driveability, but require detailed information about the engine operating conditions, in order to be implemented inside the Electronic Control Unit (ECU). In order to determine throttle position, an interpretation of the driver desire (revealed by the accelerator pedal position) is performed by the ECU. In our approach, such interpretation is carried out in terms of a torque request that can be appropriately addressed knowing the actual engine-vehicle operating conditions, which depend on the acting torques. Estimates of the torque due to in-cylinder pressure (indicated torque), as well as the torque required by the vehicle (load torque), must then be available to the control module.
Technical Paper

Impact of Tumble on Combustion in SI Engines: Correlation between Flow and Engine Experiments

2007-10-29
2007-01-4003
The introduction of tumble into the combustion chamber is an effective method of enhancing turbulence intensity prior to ignition, thereby accelerating the burn rates, stabilizing the combustion, and extending the dilution limit. In this study, the primary intake runners are partially blocked to produce different levels of tumble motion in the cylinder during the air induction process. Experiments have been performed with a Chrysler 2.4L 4-valve I4 engine at maximum brake torque timing under two operating conditions: 2.41 bar brake mean effective pressure (BMEP) at 1600 rpm, and 0.78 bar BMEP at 1200 rpm. A method has been developed to quantify the tumble characteristics of blockages under steady flow conditions in a flow laboratory, by using the same cylinder head, intake manifold, and tumble blockages from the engine experiments.
Technical Paper

Implementation of an Electric All-Wheel Drive (eAWD) System

2008-01-14
2008-01-0599
This paper presents the implementation and performance of an electric all-wheel drive system on a series-parallel, through-the-road hybrid electric vehicle. Conventional methods of all-wheel drive do not provide a suitable solution for this type of vehicle as the powertrain lacks a mechanical link between the front and rear axles. Moreover, this unique architecture allows the vehicle to be propelled solely by the front, or the rear, wheels during typical operation. Thus, the algorithm presented here manages wheel slip by either the front, or rear wheels when engaging to provide all-wheel drive capability. necessary testing validates the robustness of this Extensive system.
Journal Article

In-Vehicle Test Results for Advanced Propulsion and Vehicle System Controls Using Connected and Automated Vehicle Information

2021-04-06
2021-01-0430
A key enabler to maximizing the benefits from advanced powertrain technologies is to adopt a systems integration approach and develop optimized controls that consider the propulsion system and vehicle as a whole. This approach becomes essential when incorporating Advanced Driver Assistance Systems (ADAS) and communication technologies, which can provide information on future driving conditions. This may enable the powertrain control system to further improve the vehicle performance and energy efficiency, shifting from an instantaneous optimization of energy consumption to a predictive and “look-ahead” optimization. Benefits from this approach can be realized at all levels of electrification, from conventional combustion engines to hybrid propulsion systems and full electric vehicles, and at all levels of vehicle automation.
Journal Article

Instabilities at the Low-Flow Range of a Turbocharger Compressor

2013-05-13
2013-01-1886
The acoustic and performance characteristics of an automotive centrifugal compressor are studied on a steady-flow turbocharger test bench, with the goal of advancing the current understanding of compression system instabilities at the low-flow range. Two different ducting configurations were utilized downstream of the compressor, one with a well-defined plenum (large volume) and the other with minimized (small) volume of compressed air. The present study measured time-resolved oscillations of in-duct and external pressure, along with rotational speed. An orifice flow meter was incorporated to obtain time-averaged mass flow rate. In addition, fast-response thermocouples captured temperature fluctuations in the compressor inlet and exit ducts along with a location near the inducer tips.
Technical Paper

Modeling and Simulation of a Shift Hydraulic System for a Stepped Automatic Transmission

2003-03-03
2003-01-0314
It is well-known that the shift hydraulic system plays a major role in the operation of stepped automatic transmissions. The main functions of the hydraulic system are to generate and maintain adequate fluid pressures for transmission operation, as well as to initiate gear shifts and control shift quality. Therefore, quantitative understanding of the dynamic behavior of the hydraulic system is critical to the improvement of automatic transmission performance. This paper presents the development of a nonlinear dynamic model for the shift hydraulic system of a stepped automatic transmission. The model includes all necessary dynamics, namely, hydraulic line pressure dynamics, solenoid valve dynamics, pressure control valve dynamics, as well as clutch and accumulator dynamics. The model is developed and implemented using Matlab/Simulink®, and is validated against experimental data.
Technical Paper

Motor Resolver Fault Diagnosis for AWD EV based on Structural Analysis

2018-04-03
2018-01-1354
Electric vehicles (EVs) and hybrid electric vehicles (HEVs) are getting more attention in the automotive industry with the technology improvement and increasing focus on fuel economy. For EVs and HEVs, especially all-wheel drive (AWD) EVs with two electric motors powering front and rear axles separately, an accurate motor speed measurement through resolver is significant for vehicle performance and drivability requirement, subject to resolver faults including amplitude imbalance, quadrature imperfection and reference phase shift. This paper proposes a diagnostic scheme for the specific type of resolver fault, amplitude imbalance, in AWD EVs. Based on structural analysis, the vehicle structure is analyzed considering the vehicle architecture and the sensor setup. Different vehicle drive scenarios are studied for designing diagnostic decision logic. The residuals are designed in accordance with the results of structural analysis and the diagnostic decision logic.
Technical Paper

Refinement of a Parallel-Series PHEV for Year 3 of the EcoCAR 2 Competition

2014-10-13
2014-01-2908
The EcoCAR 2 team at the Ohio State University has designed an extended-range electric vehicle capable of 44 miles all-electric range, which features a 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes made possible by a 1.8-L ethanol (E85) engine and a 6-speed automated manual transmission. This vehicle is designed to reduce fuel consumption, with a utility factor weighted fuel economy of 50 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This report documents the team's refinement work on the vehicle during Year 3 of the competition, including vehicle improvements, control strategy calibration and dynamic vehicle testing, culminating in a 99% buy off vehicle that meets the goals set forth by the team. This effort was made possible through support from the U.S. Department of Energy, General Motors, The Ohio State University, and numerous competition and local sponsors.
Technical Paper

Structural Analysis Based Sensor Placement for Diagnosis of Clutch Faults in Automatic Transmissions

2018-04-03
2018-01-1357
This paper describes a systematic approach to identify the best sensor combination by performing sensor placement analysis to detect and isolate clutch stuck-off faults in Automatic Transmissions (AT) based on structural analysis. When an engaged clutch in the AT loses pressure during operation, it is classified as a clutch stuck-off fault. AT can enter in neutral state because of these faults; causing loss of power at wheels. Identifying the sensors to detect and isolate these faults is important in the early stage of the AT development. A universal approach to develop a structural model of an AT is presented based on the kinematic relationships of the planetary gear set elements. Sensor placement analysis is then performed to determine the sensor locations to detect and isolate the clutch stuck-off faults using speed sensors and clutch pressure sensors. The proposed approach is then applied to a 10-Speed AT to demonstrate its effectiveness.
Technical Paper

Structure-Borne Noise Measures and Their Correlation to Sound Radiation over a Broad Range of Frequencies

2003-05-05
2003-01-1450
Structure-borne noise within vehicle structures is often transmitted in a multi-dimensional manner and thus the vibro-acoustic model(s) of automotive powertrain or chassis must incorporate longitudinal and transverse (flexural) motions as well as their couplings. In this article, we employ the continuous system theory to model a typical vibration isolator (say the engine mounting system) and a compliant receiver that could simulate the body structure. The powertrain source is however assumed to be rigid, and both harmonic force and moment excitations are considered. Our analysis is limited to a linear time-invariant system, and the frequency domain based mobility method is utilized to synthesize the overall system. Contributions of both in-plane and flexural motions to structure-borne and radiated noise are incorporated. Two examples are considered to illustrate the methodology.
Technical Paper

Study of Whistles with a Generic Sidebranch

1999-05-17
1999-01-1814
The coupling of shear layer instabilities with the acoustic resonances at the interface of two ducts, a main duct and a connecting sidebranch, leads to whistle noise. The present study investigates experimentally the mechanism of such pure tone noise. A generic sidebranch adapter is fabricated to allow for: (1) the ability to mount downstream of the throttle body in the induction system of a production engine; (2) the adjustment of sidebranch length; and (3) the changes in the diameter of the branch duct. Experiments are conducted both in a flow facility and an engine dynamometer facility for the same set of flow rates. The correlation of the whistle noise between these two facilities is examined in terms of frequency and the dimensionless numbers, including Strouhal and Mach.
Technical Paper

Study of the Flow Field Development During the Intake Stroke in an IC Engine Using 2–D PIV and 3–D PTV

1999-03-01
1999-01-0957
The evolution of the flow field inside an IC engine during the intake stroke was studied using 2 different experimental techniques, namely the 2–D Particle Image Velocimetry (2–D PIV) and 3–D Particle Tracking Velocimetry (3–D PTV) techniques. Both studies were conducted using a water analog engine simulation rig. The head tested was a typical pent–roof head geometry with two intake valves and one exhaust valve, and the simulated engine operating point corresponded to an idle condition. For both the 2–D PIV and 3–D PTV experiments, high–speed CCD cameras were used to record the motion of the flow tracer particles. The camera frame rate was adjusted to correspond to 1/4° of crank angle (CA), hence ensuring excellent temporal resolution for velocity calculations. For the 2–D PIV experiment, the flow field was illuminated by an Argon–ion laser with laser–sheet forming optics and this laser sheet was introduced through a transparent piston crown to illuminate the center tumble plane.
X